Google’s Edge TPU Debuts in New Development Board

This site may earn affiliate commissions from the links on this page. Terms of use.

We’ve written a fair bit about Google’s Cloud TPU, the AI inference and ML training accelerator the company developed for handling specific workloads more effectively than a GPU or CPU. These large-scale TPUs, however, are intended to power server rooms and major data centers. Google has also developed hardware for smaller devices, use-cases, and the network edge, appropriately dubbed the Edge TPU.

The Coral FAQ describes the Edge TPU as follows:

The Edge TPU is a small ASIC designed by Google that provides high-performance ML inferencing for low-power devices. For example, it can execute state-of-the-art mobile vision models such as MobileNet V2 at 100+ fps, in a power efficient manner.

devboard-dimensions

The Coral development board includes:

  • Edge TPU Module (SOM)
  • NXP i.MX 8M SOC (Quad-core Cortex-A53, plus Cortex-M4F)
  • Google Edge TPU ML accelerator coprocessor
  • Vivante GC7000 GPU
  • Cryptographic coprocessor
  • Wi-Fi 2×2 MIMO (802.11b/g/n/ac 2.4/5GHz)
  • Bluetooth 4.1
  • 8GB eMMC
  • 1GB LPDDR4

Various USB ports, audio connections, and video connections are all available, including multiple microphone hook-ups, USB-C support, an HDMI 2.0a port, and both a 39-pin and 24-pin connector for a MIPI-DSI display and a MIPI-CSI2 camera. The Edge TPU claims to support Mendel Linux (a derivative of Debian). I wasn’t able to find any information on this distro online. Google’s web page for the Edge TPU project only states that the device is compatible with “Linux OS.” This may be a typo in the documentation or a reference to a custom Linux distro that Google built itself. The dev board is on sale for $149.99.

Also up for sale is a new Edge USB accelerator. Unlike the complete development module, this is just an Edge TPU implemented via USB that can be connected to other devices, such as a Raspberry Pi. Think of it as conceptually similar to Intel’s Neural Compute Stick. Benchmarks for the Edge TPU and USB-connected version (according to Google’s FAQ) are below. The new USB accelerator is also cheaper than the full board, at $74.99:

CoralEdgeTPU-Benchmarks

The Edge TPU only supports TensorFlow Lite, so any code you want to run on the hardware must be converted to that format first. It can’t perform traditional backward propagation (necessary for traditional ML training), but there’s a modified way you can run these workloads in specific instances, as described in the FAQ.

For now, AI remains a fairly specialized field, and parts like this are intended for a relatively small developer audience that can use them for software testing. In the future, however, these types of low-cost devices could be key to extending AI capabilities to ‘regular folks’ and hardware, allowing more people to experiment with the kinds of features AI can provide.

Now Read: